Problem set - 2

1. Create two 4×4 matrices A and B with random values between 0 and 1 . Then find the following:
(a) $A+B$
(b) $A-B$
(c) $A \cdot B$
(d) Determinant of A
(e) Transpose of A
(f) Inverse of A
2. Construct and store a matrix A that is filled row-wise with the values $1.41,3.14,1.61,0$, $9.83,1729,2.71,-1,1,9,1.7,0.19$.
(a) Find the number of columns and rows of A.
(b) Create a square matrix B by removing any column/row from A.
(c) Create an identity matrix $I d$ of the same size as B. Then confirm that $B \cdot B^{-1}-I d$ is a zero matrix.
(d) Find $A^{T} \cdot B^{T}$ or $A \cdot B^{T}$, whichever is possible.
3. Create a vector with 12 integers. Convert the vector to a 4×3 matrix C using matrix ().
4. Create a vector a.vec of length 12 whose even entries are logical TRUE and odd entries are logical FALSE. Now shuffle the entries of a.vec randomly.
5. Create a random vector of length ten that takes values between $[-1,1]$. Find the indices corresponding to the negative values.
6. Store the vector $c(8,8,4,4,5,1,5,6,6,8)$ as bar. Identify the elements less than or equal to 6 AND not equal to 4 .
7. Store the vector $\mathrm{c}(7,1,7,10,5,9,10,3,10,8)$ as foo. Identify the elements greater than 5 OR equal to 2 .
8. Check whether any integer between 1 and 100 follow the equation $x^{5}-45 x^{4}+810 x^{3}-$ $7290 x^{2}+32805 x-59049$. If yes, find that integer.
9. Re-create exactly the following output:
```
"The quick brown fox
    jumped over
        the lazy dogs"
```

10. Suppose you've stored the values num $1<-4$ and num $2<-0.75$. Write a line of R code that returns the following string:
[1] "The result of multiplying 4 by 0.75 is $3 . "$
11. Store the string "Two 6 -packs for $\$ 12.99$ ". Then do the following:
(a) Use a check for equality to confirm that the substring beginning with character 5 and ending with character 10 is " 6 -pack".
(b) Make it a better deal by changing the price to $\$ 10.99$.
12. Recreate exactly the following output using paste:
```
[1] "Group 1" "Group 2" "Group 3" "Group 4" "Group 5" "Group 6"
[7] "Group 7" "Group 8" "Group 9" "Group 10"
```

